

# Reducing the carbon footprint of ICT devices, platforms and networks

**GeSI Global Assembly** 

Thierry Van Landegem

Chair, GreenTouch Operations Committee



#### MASSIVE DATA TRAFFIC GROWTH



#### Today



- 17.5 GigaWatts
- ~ 9 Hoover Dams
- ~ 15 nuclear power plants



- ~ 15M car emissions a year
- ~ 150,000 Paris to New York round-trip flights



<u>Data from</u>: RHK, McKinsey-JPMorgan, AT&T, MINTS, Arbor, ALU, and

<u>Bell Labs Analysis</u>: Linear regression on log(traffic growth rate) versus log(time) with Bayesian <u>learning</u> to compute uncertainty

**Future** 





#### **2020 ICT CARBON FOOTPRINT**

820m tons CO<sub>2</sub>

- 2007 Worldwide ICT carbon footprint: 2% = 830 m tons CO<sub>2</sub>
- Comparable to the global aviation industry
- Expected to grow to 4% by 2020



360m tons CO<sub>2</sub>

260m tons CO<sub>2</sub>

Total emissions: 1.43bn tonnes CO2 equivalent

The Climate Group, GeSI report "Smart 2020", 2008



#### ICT: A PROBLEM AND THE SOLUTION

Prediction that ICT will save more

energy than it will consume

ICT today: 2% of global emissions... with an opportunity to make tremendous impact on the remaining 98%



GreenTouch

#### **SLOW-DOWN IN TECHNOLOGY**



Network energy efficiency only increasing at 10-15% per year







#### THE NETWORK ENERGY GAP





#### BEST CASE EFFICIENCY IMPROVEMENTS





### GREENTOUCH MISSION (www.greentouch.org)

By 2015, our goal is to deliver the architecture, specifications and roadmap — and demonstrate key components and technologies —needed to increase network energy efficiency by a factor of 1000 from current levels.



- Global research consortium representing industry, government and academic organizations
- Launched in May 2010
- 53 member organizations
- 300 individual participants from 19 countries
- 25+ projects across wireless, wireline, routing, networking and optical transmission



#### EFFICIENCY AND RENEWABLE ENERGY SOURCES



Greenpeace, G. Cook, J.V. Horn, 'How dirty is your data' 2011 Greenpeace, EREC 'Energy (R)evolution' 2010





#### **GREENTOUCH STATUS: WHERE ARE WE?**

- Over 25 research projects underway
- Two major public demonstrations
- Establish and define common reference architecture and roadmap with strategic research directions
- Initiated a policy and standards group within GreenTouch
- Collaboration and cooperation agreements with other leading organizations (including GeSI)
- Next face to face meeting



#### SOME RESEARCH PROJECTS...

Beyond Cellular - Green Mobile Networks Virtual Home Gateway Optimal End-to-End Resource Allocation Service Energy Aware Optical Networks & COLUMBIA UNIVERSITY **Green Transmission Technologies** Minimum Energy Access Architectures Single-Chip Linecards Large-Scale Antenna Systems Highly-Adaptive Layer Mesh Networks Massive MIMO

25+ **Projects** 

Fondazione Politecnico di Milano

CEET centre for sucrey-of ficient telecommunications

Bell Labs

imec

Bell Labs



## 1. BEYOND CELLULAR GREEN GENERATION (BCG2)



- Wireless access networks are dimensioned for estimated peak demand using dense layers of cell coverage
- Traffic varies during the day
- Energy consumption is almost constant Due to the power consumed by signaling



















#### **BCG<sup>2</sup> ARCHITECTURE**



#### Opportunities for sustainability:

- System designed for energy efficiency
  - Separate capacity from coverage
  - Optimise signalling transmission
  - Lean access to system
- Cope with massive amount of low data rate services

#### Challenges:

- New system architecture
- Re-invent mobility management
- Agile management, context aware, network with memory
- Hardware for fast reconfiguration



## 2. SEASON: SERVICE ENERGY AWARE SUSTAINABLE OPTICAL NETWORKS

- SEASON is a clean-slate network design project focusing on maximum energy efficiency through awareness of service requirements
  - Focus on services with high bandwidth
  - Understand how service requirements (bandwidth, duration, latency, multi-cast, security, protection,...) impact energy
  - Focus on core network dynamic functionality



















# IMPACT OF ENERGY EFFICIENT SERVICE-CENTRIC NETWORKS



- New platform for networked micro data centers with dynamically configured network
- Provides scalable and sustainable future networks, services and content delivery in the long-term
- Enables network operators, content providers, large enterprise and government institutions to transfer large amounts of data, synchronize databases and content caches and provide real-time, high-bandwidth services in the most energy efficient way
  - Supports big data / elephant flows (90% of traffic due to 10% of flows) (e.g. between data centers)
  - Supports new high-bandwidth real-time applications (e.g. high definition, multi-view video)
- Enables on-demand use of resources, reduce power consumption and over-provisioning of the network through dynamic network functionalities



#### SEASON RESEARCH CHALLENGES

- Current network reconfigurations are slow and with complications from physical layer and control plane
- Traditional IP-over-WDM network not designed with energy efficiency in mind
- Project takes an end-to-end approach involving hardware, software, architecture, algorithms and protocols, each one being crucial for end-to-end energy efficiency, and requiring broad skills and expertise
- Demonstrate end-to-end solution in small scale lab and then in fielddeployed prototype



#### **GREENTOUCH STATUS: WHERE ARE WE?**

- Over 25 research projects underway
- Two major public demonstrations
- Establish and define common reference architecture and roadmap with strategic research directions
- Initiated a policy and standards group within GreenTouch
- Collaboration and cooperation agreements with other leading organizations (including GeSI)
- Next face to face meeting



#### 1. LARGE SCALE ANTENNA SYSTEM



- Beam-forming for energy efficiency, not capacity
- First GreenTouch technology demonstration



## Measured RF transmit power is inversely proportional to the number of antennas:





# 2. BIT-INTERLEAVING PASSIVE OPTICAL NETWORK (Bi-PON)

- The Problem: In current FTTH architectures, all data is processed but 97% is unused
  - With FTTH expected to nearly double over the next five years—to 142 million subscribers worldwide—energy consumption is a major concern.
- GreenTouch Solution: New Bit-Interleaving Passive Optical Network (BI-PON) technology
  - New FTTH protocol that consumes 10x less power than currently available technologies
  - Next major leap in optical technologies, expected to be a necessity as electronic processing will increase with the next-generation 40GPON systems expected by 2015
  - Enable power reduction equal to taking 3 million cars off the road
- Second major milestone toward achieving the GreenTouch goal











## **STANDARD XG-PON**





### **BIT-INTERLEAVING PON**





#### **GREENTOUCH STATUS: WHERE ARE WE?**

- Over 25 research projects underway
- Two major public demonstrations
- Establish and define common reference architecture and roadmap with strategic research directions
- Initiated a policy and standards group within GreenTouch
- Collaboration and cooperation agreements with other leading organizations (including GeSI)
- Next face to face meeting



#### **GETTING TO A FACTOR 1000**





## SIMPLE MODELS FOR EACH NETWORK ARCHITECTURE





#### TRACKING PROGRESS TOWARDS OVERALL GOAL



- Define architectures and track research results
  - Identify targets for each architecture and update network efficiency in model as targets are achieved
    - Working groups define targets and evaluate completion
    - Targets can be achieved within GreenTouch projects or from broader community
    - Identify gaps in effort and solicit new activities



#### **EXAMPLE OF MORE DETAILED ROADMAP**



#### **GREENTOUCH** and GeSI

- 1. Smart Cities
- 2. 2020 Trends
- 3. Energy Surveys & Audits
- 4. Policy & Standards
- 5. Roadmap Equipment Trends
- 6. Micro-Traffic Models & Associated Technology Metrics



## **Next GreenTouch Meeting**

June 5-7 in Dallas, TX





#### CONCLUSIONS

- ICT networks are growing rapidly
  - Scaling networks is becoming more difficult
  - Bringing focus to energy efficiency
- ICT and research communities are organizing to address challenges
  - Dramatic, holistic change, but over long term evolution
  - Cooperative organizations such as GreenTouch guiding evolution
- Several promising research directions and initial results have been obtained
- More work remains!





## Thank You

www.greentouch.org

### **GREENTOUCH MEMBERS**

- Athens Information Technology (AIT) Center
- Bell Labs, Alcatel-Lucent
- Broadcom
- Carnegie Mellon University
- CEA-LETI Applied Research Institute for Microelectronics
- China Mobile
- Chunghwa Telecom
- Columbia University
- Commscope/Andrew
- Dublin City University
- ETRI
- ES Network/Lawrence Berkeley Labs
- Fondazione Politecnico di Milano
- Fraunhofer-Geselleschaft
- France Telecom
- Fujitsu
- Huawei
- IBBT

- IMEC
- Indian Institute of Science
- IIT Delhi
- INRIA
- KAIST
- Karlsruhe Institute of Tech.
- Katholieke Universiteit Leuven (K.U. Leuven)
- King Abdulaziz City for Science and Technology
- KT Corporation
- National Chiao Tung University
- National ICTA Australia
- Nippon Telegraph and Telephone Corp
- Politecnico di Torino
- Portugal Telecom Inovação, S.A.
- Samsung (SAIT)
- Shanghai Institute of Microsystems & Information Technology
- Swisscom
- TNO
- Tsinghua University

- TTI
- TU Dresden
- University College London
- University of Cambridge
- University of Delaware
- University of L'Aquila
- University of Leeds
- University of Manchester
- University of Maryland
- University of Melbourne's Institute for a Broadband-Enabled Society (IBES)
- University of Missouri-Kansas City
- University of New South Wales
- University of Paderborn
- University of Rochester
- University of Toronto
- Utah State University
- Vodafone Group
- Waterford Institute of Technology
- ZTE

